A Domain-Independent Window Approach to Multiclass Object Detection Using Genetic Programming

نویسندگان

  • Mengjie Zhang
  • Victor Ciesielski
  • Peter Andreae
چکیده

This paper describes a domain-independent approach to the use of genetic programming for object detection problems in which the locations of small objects of multiple classes in large images must be found. The evolved program is scanned over the large images to locate the objects of interest. The paper develops three terminal sets based on domain-independent pixel statistics and considers two different function sets. The fitness function is based on the detection rate and the false alarm rate. We have tested the method on three object detection problems of increasing difficulty. This work not only extends genetic programming to multiclass-object detection problems, but also shows how to use a single evolved genetic program for both object classification and localisation. The object classification map developed in this approach can be used as a general classification strategy in genetic programming for multiple-class classification problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks And Genetic Algorithms For Domain Independent Multiclass Object Detection

This paper describes a domain independent approach to multiple class rotation invariant 2D object detection problems. The approach avoids preprocessing, segmentation and specific feature extraction. Instead, raw image pixel values are used as inputs to the learning systems. Five object detection methods have been developed and tested, the basic method and four variations which are expected to i...

متن کامل

A Domain Independent Approach to Multi-class Object Detection using Genetic Programming

Object detection is the process of automatically nding objects of interest within an image. Given the abundance of information now captured and stored in electronic form, this is fast becoming a useful and challenging machine learning and computer vision task. This project uses a domain independent genetic programming approach to solve four multi-class object detection problems ranging in dif c...

متن کامل

Multi-class Classification using BFS Crossover in Genetic Programming

Multi-class classification is a kind of classification task which involves processing an input object and then assigning this object to one of the more than two possible classes.Crossover operation is considered to be a primary genetic operator for modifying the program structures in Genetic Programming (GP). Genetic Programming is a random process, and it does not guarantee results. Randomness...

متن کامل

Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification

This paper describes a new approach to the use of Gaussian distribution in genetic programming (GP) for multiclass object classification problems. Instead of using predefined multiple thresholds to form different regions in the program output space for different classes, this approach uses probabilities of different classes, derived from Gaussian distributions, to construct the fitness function...

متن کامل

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2003  شماره 

صفحات  -

تاریخ انتشار 2003